Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity.

نویسندگان

  • Delphine Vincent
  • Ali Ergül
  • Marlene C Bohlman
  • Elizabeth A R Tattersall
  • Richard L Tillett
  • Matthew D Wheatley
  • Rebekah Woolsey
  • David R Quilici
  • Johann Joets
  • Karen Schlauch
  • David A Schooley
  • John C Cushman
  • Grant R Cramer
چکیده

The impact of water deficit and salt stress on two important wine grape cultivars, Chardonnay and Cabernet Sauvignon, was investigated. Plants were exposed to increasing salinity and water deficit stress over a 16 d time period. Measurements of stem water potentials, and shoot and leaf lengths indicated that Chardonnay was more tolerant to these stresses than Cabernet Sauvignon. Shoot tips were harvested every 8 d for proteomic analysis using a trichloroacetic acid/acetone extraction protocol and two-dimensional gel electrophoresis. Proteins were stained with Coomassie Brilliant Blue, quantified, and then 191 unique proteins were identified using matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry. Peptide sequences were matched against both the NCBI nr and TIGR Vitis expressed sequence tag (EST) databases that had been implemented with all public Vitis sequences. Approximately 44% of the protein isoforms could be identified. Analysis of variance indicated that varietal difference was the main source of protein expression variation (40%). In stressed plants, reduction of the amount of proteins involved with photosynthesis, protein synthesis, and protein destination was correlated with the inhibition of shoot elongation. Many of the proteins up-regulated in Chardonnay were of unclassified or of unknown function, whereas proteins specifically up-regulated in Cabernet Sauvignon were involved in protein metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water Deficit Increases Stilbene Metabolism in Cabernet Sauvignon Berries

The impact of water deficit on stilbene biosynthesis in wine grape (Vitis vinifera) berries was investigated. Water deficit increased the accumulation of trans-piceid (the glycosylated form of resveratrol) by 5-fold in Cabernet Sauvignon berries but not in Chardonnay. Similarly, water deficit significantly increased the transcript abundance of genes involved in the biosynthesis of stilbene prec...

متن کامل

Separation and Purification of Four Stilbenes from Vitis vinifera L. cv. Cabernet Sauvignon Roots Through High-speed Counter- current Chromatography

S. Afr. J. Enol. Vitic., Vol. 35, No. 2, 2014 *Corresponding author: [email protected] [Tel./fax: +86 10 62737553] Acknowledgements: This work was financially supported by the Natural Science Foundation of China (No. 31171786), the Special Fund for Agro-scientific Research in the Public Interest (No. 201303076-03) and the China Agriculture Research System (CARS-30) Separation and Purification of ...

متن کامل

Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla).

One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varietie...

متن کامل

The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains.

Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid fl...

متن کامل

Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease

The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce's disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 7  شماره 

صفحات  -

تاریخ انتشار 2007